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Abstract. We obtain a closed-form expression for the distribution of fusion barriers for vibrational nuclei
using a generalization of Dasso, Landowne, and Winther’s model, which represents the nuclear surface
vibrations as a number of harmonic oscillators, and allows the excitation of an arbitrary number of phonons
in the target and/or projectile. We find that this expression is in reasonable agreement with the average
trends of the empirical distributions for the fusion of 16O with 92Zr, 144Sm and 208Pb, but fails to reproduce
the double peaking of the distribution for the 144Sm target. Only when we restrict the number of excited
phonons to a limited number, we are able to reproduce such discrete structures. We show that limiting
the number of coupled channels, particularly in the case of strong coupling, increases the spacings between
the channel eigenvalues that determine the positions of the peaks of the barrier distribution and modifies
their heights.

PACS. 25.70.Jj Fusion and fusion-fission reactions – 24.10.-i Nuclear-reaction models and methods –
25.70.-z Low and intermediate energy heavy-ion reactions – 21.60.Ev Collective models

1 Introduction

Experimental cross-sections for heavy-ion fusion at en-
ergies below the Coulomb barrier are by several or-
ders of magnitude exceeding the predictions of the one-
dimensional potential model. This is believed to be due
to the coupling of the relative motion of the interacting
nuclei to their intrinsic degrees of freedom [1,2]. When the
excited state of the target and/or projectile are modeled
as a classical rotator or vibrator, collective coordinates
represent the internal degrees of freedom. A wave packet
in the multidimensional space of the collective coordinates
and those of the relative motion can represent the fusing
system [3]. It propagates on the energy surface inside a
fusion valley which is defined by the adiabatic potential,
until it crosses the mountain that separates the internal
(compound) region from the outside, binary regime. Due
to its width, it will probe the mountain ridge at different
heights at the same time. Schematically, one may there-
fore represent the fusion excitation function by a weighted
average of the one-dimensional fusion cross-sections over
some part of the mountain ridge. Rowley, Satchler and
Stelson [4] related the barrier distribution to the second
derivative with respect to energy E of the quantity Eσfus,
where σfus is the fusion cross-section. Nowadays, the quan-
tity d2Eσfus/dE2 itself is taken as a representation for the
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barrier distribution:

D(E) =
1

πR2
B

d2(Eσfus)
dE2

. (1)

Recently, barrier distributions defined by (1) have been
extracted directly from high-precision measurements of fu-
sion excitation functions for many systems (e.g., [5–7]).
Coupled-channel calculations involving the excitation of
one (or more) states of the target and/or projectile in
general agree with the empirical fusion-barrier distribu-
tions. It would have seemed natural to expect that the in-
crease of the number of coupled channels should improve
the agreement. This is not the case, as we shall demon-
strate in the present paper. We apply the eigenchannel
method, which introduces a considerable simplification of
coupled-channel calculations [8–10]. A brief account of this
method is given in section 2 below. It achieves analytical
solutions by including only the linear coupling of the rel-
ative motion with the collective modes of excitation of
each of the interacting nuclei [11–13]. Higher-order cou-
pling of nuclear surface vibrations to relative motion plays
an important role in fusion only for nearly symmetric sys-
tems [14–18]. Dasso, Ladowne and Winther [19,20] in-
troduced a further simplification by assuming a constant
form factor for the coupling between the relative and in-
trinsic motions and representing the intrinsic motion of
the colliding nuclei by a harmonic oscillator. Section 3 of
the present paper applies a generalization of this model to
account for the possible excitation of phonons of different
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multipolarity in both the target and projectile. The prob-
ability of transmission through the fusion barrier in the
presence of coupling is expressed as a weighed average of
the transmission coefficients for an infinite set of effective
barriers corresponding to all possible excited states of the
harmonic oscillators. The resulting expression is compared
with the empirical fusion-barrier distributions for the in-
teraction of 16O with 92Zr, 144Sm and 208Pb [5–7]. While
the agreement between this expression and empirical dis-
tributions is satisfactory for the 92Zr and 208Pb targets,
the model fails to reproduce the two distinguished peaks
of the distribution for the 144Sm target. We argue that
the reason for the disagreement is in allowing the excita-
tion of unlimited number of phonons and that the barrier
distribution has distinct peaks only in the case of a lim-
ited number of coupled channels. We demonstrate by a
numerical diagonalization of the coupling matrix that re-
stricting the number of coupled channels to a small value
increases the separation of its eigenvalues relative to the
results for infinite number of coupled channels. This in-
crease enhances the chance for individual coupled channels
to produce resolved peaks. As the number of the involved
channels increases, the separation between the eigenval-
ues decreases. In the case of weak coupling, the results
of the restricted coupled-channel calculation rapidly con-
verge to those of infinite channel coupling. This is the case
for the 92Zr and 208Pb targets, where the account of two-
phonon excitations has previously been found sufficient
to smooth out the discrete structure of the barrier distri-
bution [21–23]. The stronger the coupling, the slower the
convergence to the result of infinite coupled-channel calcu-
lation, which seems to be the case for the interaction with
144Sm. Indeed, the barrier distribution obtained for the
16O + 144Sm reaction by considering the excitation of the
single quadrupole- and octupole-phonon states is in good
agreement with the experimental data, especially when
the second derivative is evaluated by a difference method.
Finally, we show that the barrier distribution obtained in
this way is in a reasonable agreement with more realistic
coupled-channel calculations.

2 The eigenchannel method

The coupled-channel approach is the natural framework
for studying the effect of the intrinsic degrees of freedom
of a pair of colliding nuclei on their fusion cross-section.
The method starts by representing the total Hamiltonian
as

H = H0(ξ) +K + V (r) + Vcpl(r, ξ) , (2)

where H0(ξ) is the Hamiltonian of intrinsic motion of
the interacting nuclei whose internal structure is repre-
sented by ξ, K and V (r) are the kinetic and potential
energy operators for the relative motion and Vcpl(r, ξ) is
the coupling of the relative motion and the internal sys-
tem. Expanding the eigenfunctions of the Hamiltonian (2)
in terms of the eigenstates |n〉 of H0(ξ), one reduces the
time-independent Schroedinger equations to a set of cou-
pled equations for the wave functions of relative motion

in the different channels. The neglect of angular momen-
tum transfer to intrinsic degrees of freedom [24] decouples
the equations for the wave functions χnl(r) of the radial
motion corresponding to different partial waves, and one
obtains[
− �

2

2µ
d2

dr2
+ Vl(r)− E

]
χnl(r) = −

∑
m

〈n |M |m〉χml(r) ,

(3)

where µ is the reduced mass, Vl(r) = V (r)+�
2l(l+1)/2µr2

and the coupling matrix M(r, ξ) = H0(ξ)+Vcpl(r, ξ). The
uncoupled equations (3) are then reduced to a set of cou-
pled equations (eigenchannels) by introducing a unitary
transformation U which diagonalizes the coupling matrix,
and neglecting the non-commutativity of U with the ki-
netic energy.

Dasso, Landowne, and Winther [19,20] introduced a
further simplification by representing the Hamiltonian of
intrinsic motion H0(ξ) as a harmonic oscillator and set-
ting Vcpl(r, ξ) = F0ξ (the linear-coupling approximation),
where F0 =constant (the constant-coupling approxima-
tion). The matrix M is then given by

M(ξ) = π2/2D + Cξ2/2 + F0ξ , (4)

where π is the generalized momentum corresponding to
the generalized coordinate ξ, while D, C and F0 are con-
stant parameters. The eigenfunctions of the operator M
are those of an oscillator which is shifted in coordinate by
F0/C and displaced in energy by F 2/�ω, where

ω =
√
C/D and F = F0

√
�ω/2C . (5)

Thus the eigenvalue of the n-th eigenstate of M is

λn = n�ω − F 2/�ω, (6)

and the overlap of this eigenstate with the ground state
of the Hamiltonian H0(ξ) is given by

|Un0|2 = 1
n!

(
F

�ω

)2n

e
− F2

(�ω)2 , (7)

which is a Poisson distribution for the phonon number
with mean value given by

n̄ = F 2/(�ω)2 . (8)

Thus, channel-coupling effect is reduced to the replace-
ment of the incident channel potential barrier Vl(r) by a
set of eigenchannel barriers Vl(r) + λn. The transmission
probability calculated in the incoming wave boundary con-
ditions will then be given by

T̃l(E) =
∑

n

|Un0|
2
Tl (E − λn) , (9)

where Tl(E) is the transmission coefficient for the poten-
tial Vl(r).
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3 Calculation of fusion-barrier distribution

3.1 Unlimited number of excited phonons

It is straightforward to extend the Dasso-Landowne-
Winther model to incorporate the excitation of N differ-
ent vibrational modes in the target and/or projectile, if
we neglect the phonon-phonon interaction. To do this, we
replace eq. (4) by a sum of N terms, each corresponding
to an individual type of phonons:

M(ξ) =
N∑

m=1

(
π2

m/2Dm + Cmξ
2
m/2 + F0,mξm

)
. (10)

Assuming the existence of the complete set of eigen-
states of the coupling matrixM , we expand the wave func-
tions of the total Hamiltonian (2) in terms of these eigen-
states rather than those of H0(ξ). A product of eigenfunc-
tions of the individual terms constituting the sum will give
each of the eigenfunctions of M and each eigenvalue will
be a superposition of the individual eigenvalues. Then

T̃l(E) =
∑

n1,n2,...,nN

|Un10Un20...UnN0|2

× Tl

[
E −

N∑
m=1

(nm − n̄m)�ωm

]
, (11)

where the sums over the indices nm run from zero to in-
finity as a consequence of allowing the excitation of an
unlimited number of phonons. In principle, this violates
energy conservation. Involving all terms in the sum in (11)
can be done as far as the incident energy is much greater
than the eigenvalues of the shifted harmonic oscillator M
corresponding to the mean values n̄m. This is indeed the
case in heavy-ion reactions at energies near and above the
height of the nominal barrier B. We also note that the
existence of nuclear excited states with more than three
phonons has never been confirmed. We thus expect the
results of the infinite summation in (11) to be physically
acceptable only if the mean values of the numbers of in-
volved phonons are small.

Analytical expressions for the fusion cross-section σfus

and barrier distribution D(E) can be obtained by repre-
senting the radial dependence of the potential barrier as
an inverted parabola:

V (r) = B − 1
2
µω2

B(r −RB)2. (12)

This can be achieved by expanding the potential V (r)
in a Taylor series centered at the barrier position RB,
where V is maximum, and neglecting terms of orders
higher than the second. When the nuclear part of V is
represented in a Woods-Saxon form of depth V0, radius
R0 and diffuseness a, the barrier parameters in the case

when a � R0 are approximately given by

B ∼= ZPZTe
2

RB

(
1− a

RB

)
,

RB = R0 + a
ln(U0R

2
0 / aZPZTe

2)
1− 2a/R0

,

and ωB
∼=
√
ZPZTe2

µaR2
B

(
1− 2a

RB

)
. (13)

Following Wong [25], we approximate the l-dependence
of the transmission coefficient by simply shifting the en-
ergy by an amount equal to the centrifugal energy at the
position of the barrier,

Tl(E) ∼= T0

[
E − l(l + 1)�2

2µR2
B

]
, (14)

where T0(E) is the transmission coefficient for the s-wave
as given by Hill and Wheeler [26], and obtain a similar
equation for T̃l(E). Balantekin and collaborators [1,27]
discuss the corrections to this approximation. Now, re-
placing the sum over partial-wave transmission coefficient
in the expression for σfus by an integral over l, and chang-
ing the integration variable into E′ = E− l(l+1)�2/2µR2

B
yields

Eσfus = πR2
B

∫ E

−∞
dE′T̃0(E′) . (15)

It is easy to see that the barrier distribution in this
case will be given by

D(E) =
∑

n1,n2,...,nN

n̄n1
1 n̄n2

2 ...n̄nN

N

n1!n2!...nN !
e
−

N∑
m=1

n̄m

(2π/�ωB)

× e
2π[E−B−∑

m
(nm−n̄m)�ωm]/�ωB

[
1 + e

2π[E−B−∑
m

(nm−n̄m)�ωm]/�ωB
]2 , (16)

where n̄m = F 2
m/(�ωm)2, and Fm is defined by an equation

analogous to (5).
In the analysis of fusion reactions, Fm is expressed in

terms of the nuclear and Coulomb potentials at the Barrier
position, as in [11,12]

Fm =
βλ,m√
4π


−RdVN

dr

∣∣∣∣∣
r=RB

+
3ZTZPe

2Rλ

(2λ+ 1)Rλ+1
B




=
βλ,m√
4π

ZTZPe
2

RB

[
R

RB
+

3
2λ+ 1

(
R

RB

)λ
]
, (17)

where λ is the multipolarity of the transition, βλ,m the
effective deformation parameter of the mode m, and R
the radius of the excited nucleus. For vibrational nuclei,
βλ,m is calculated in terms of the relevant ground-state
electromagnetic reduced transition probability by

βλ,m =
4π
3ZRλ

0

√
B(Eλ,m) ↑

e2
. (18)
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Table 1. Eigenvalues λm of the N × N matrix M , given in units of �ω, and overlap coefficients of the eigenvectors with the
ground state of the corresponding harmonic oscillator Wm (given between brackets) for different values of the “mean number
of phonons” n̄.

n̄ N
2 3 4 ∞

0.5 −0.366 (0.789) −0.470 (0.661) −0.495 (0.618) −0.500 (0.607)
1.366 (0.211) 0.797 (0.318) 0.587 (0.325) 0.500 (0.303)

2.714 (0.021) 1.964 (0.056) 1.500 (0.076)
3.944 (0.001) 2.500 (0.013)

1.0 −0.618 (0.724) −0.861 (0.520) −0.955 (0.423) −1.000 (0.367)
1.618 (0.274) 0.746 (0.442) 0.333 (0.460) 0.000 (0.367)

3.115 (0.038) 2.080 (0.113) 1.000 (0.184)
4.543 (0.004) 2.000 (0.061)

2.0 −1.000 (0.667) −1.489 (0.404) −1.751 (0.264) −2.000 (0.135)
2.000 (0.333) 0.711 (0.537) 0.000 (0.545) −1.000 (0.271)

3.779 (0.058) 2.310 (0.183) 0.000 (0.271)
5.441 (0.007) 1.000 (0.180)

3.2 Finite number of excited phonons

The fusion barrier distributions predicted by eq. (16) for
heavy-ion reaction involving medium-weight and heavy
nuclei are sums of nearly Gaussian functions of energy
whose widths are considerably larger than the separation
of their peaks. Therefore, they cannot reproduce the ob-
served discrete structure of the barrier distributions ob-
tained for some reactions, e.g. for 16O + 144Sm. It is nec-
essary to put a higher limit for the number of excited
phonons. This point has been clearly discussed in the case
of excitation of a single type of vibration by Nagarajan et
al. [28]. Limiting the number of coupled channel increases
the separation between neighboring channel eigenvalues
making the corresponding peaks more resolvable. This will
now be shown analytically for the case of a 2×2 matrix [1]
and numerically for higher-order matrices. In this case, the
channel eigenvalues λm and overlap factors Wm = |Um0|2
are obtained by diagonalizing the coupling matrix. The
barrier distribution is then given by

D(E) = πR2
Bκ

N∑
m=1

Wm
exp[κ(E −Bm)]

{1 + exp[κ(E −Bm)]}2 , (19)

where κ = 2π/�ωB and Bm = B − λm. In what follows
we shall keep the notation n̄m for the ratio F 2

m/(�ωm)2,
although this quantity will no more signify the mean num-
ber of excited phonons but will serve as a measure for the
strength of interaction. With the definition (8) and using
(17), we find that

n̄m ∝ (ZPZTβλ,m/�ωm)
2
. (20)

This explains the fact that the barrier distribution
strongly depends on the deformation parameter multi-
plied by the charge product and that coupling to states
with phonon energies smaller than �ωB can result in pro-
nounced barrier structure [2].

When the calculation involves only two coupled chan-
nels, one obtains the following expressions for the eigen-
values and weight factors [1]:

λ± = 1
2�ω

(
1±√

1 + 4n̄
)
,

W± = 1
2

(
1∓ 1√

1+4n̄

)
.

(21)

Thus, the difference between the two eigenvalues is in-
creased by a factor of

√
1 + 4n̄ relative to its value of �ω

in the case of infinite channel coupling. Note that this fac-
tor tends to unity in the limit of no coupling. Now, if we
eliminate the factor

√
1 + 4n̄ from eqs. (21), we obtain the

following relation:

W+

W−
=
(B+ −B−)− �ω

(B+ −B−) + �ω
. (22)

Comparing this relation with experiment will show
whether involving only one excited state, with energy �ω,
in the coupled-channel calculation will be sufficient for a
satisfactory description of the experimental barrier distri-
bution.

In order to demonstrate the effect of limiting the num-
ber of coupled channels to two on the barrier distributions,
we consider the reaction 16O + 144Sm in which the exci-
tation of an octupole phonon with �ω = 1.81 MeV dom-
inates the channel coupling [29]. Equation (16) for the
barrier distribution for infinite-channel coupling, cannot
resolve peaks corresponding to successive eigenchannels
whose separation of 1.81 MeV is less than the tunneling
width 0.56 �ωB [21]. On the other hand, restricting the
number of coupled channels to two by considering only
the excitation of the first 3− excited state of the target,
eq. (21) tells that the energy splitting between these chan-
nels is increased to 4.24 MeV. This explains the success
of the two-coupled-channel calculation in producing the
observed two separate peaks in the barrier distribution.

Limiting the number of coupled channel to N > 2
leads to a corresponding modification of the values of the
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Table 2. Test of the validity of the two-coupled-channels cal-
culation.

Reaction �ω Fitting parameters Theory

W− B− W+ B+ W+/W− W+/W−
16O+92Zr 2.34 0.78 41.0 0.22 44.3 0.28 0.14
16O+144Sm 1.81 0.73 60.4 0.27 64.6 0.37 0.40
16O+208Pb 3.20 0.66 75.8 0.34 79.8 0.52 0.11

eigenchannel energy λm and weight factors Wm, which is
gradually reduced as N increases. To show this, we have
numerically diagonalized the matrix M for N = 2–4 and
n̄ = 0.5, 1 and 2. Table 1 compares the obtained val-
ues of λm and Wm with the corresponding values for the
infinite-number of coupled channels. For the three con-
sidered values of n̄, the eigenvalues and overlap factors
obtained from the diagonalization of the 2×2 matrix are
essentially different form the corresponding values for the
limit of infinite-channel coupling. As N increases the val-
ues of both the eigenvalues and the weight factors of the
lowest-energy eigenvectors uniformly converge to the cor-
responding values of the case of infinite number of cou-
pled channels. The rate of convergence is faster for the
smaller n̄ value as expected. This is particularly the case
for the coupling with the first excited state, which is re-
sponsible for the highest secondary peak of the barrier
distribution. When n̄ = 0.5, for example, the value of the
eigenvalue is 10% lower and the overlap factor 10% higher
for N = 3 than the corresponding values when N → ∞.
On the other hand, the highest-energy eigenvalues are al-
ways shifted towards even higher energies. The shift in-
creases with increasing either N or n̄. However, this shift
will have a small effect on the barrier distribution because
it rapidly decays as the energy exceeds the nominal peak.
We can trace these effects in coupled-channel calculations,
e.g., those by Rowley [21] and Kruppa et al. [22] for the
reaction 16O + 92Zr. These calculations clearly indicate
that the increase of the number of coupled channels shifts
the high-energy peak of the distribution considerably to-
wards higher energies. We finally note from the table that,
starting from a certain (moderately low) eigenvalue that
depends on n̄, the weight factors of the high-energy states
will be too small to produce observable peaks in the bar-
rier distribution, although their separation may exceed the
tunneling width. In these cases, the distributions obtained
form either the finite- or infinite-number eigenchannel cal-
culations will be practically equal.

The shape of discrete structures of the barrier distribu-
tion will also depend crucially upon the ratio of the barrier
curvature to the vibration frequency, ωB/ω, which controls
the amount of overlap between the successive peaks. In or-
der to demonstrate this dependence, we applied eq. (19)
for the channel parameters given in table 1. Figure 1 shows
the results of calculation for ωB/ω = 2, 3 and 4. As ex-
pected, the barrier distributions gradually loose their dis-
crete structure as ωB/ω increases, and the loss is slower
for larger n̄, i.e., for stronger channel coupling. The figure
clearly demonstrates the shift of the peak positions and
the change of their relative heights with the number of

Fig. 1. Barrier distributions calculated for cases of weak (n̄
= 0.5), intermediate (n̄ = 1), and strong (n̄ =2) coupling of
N = 2–4 channels at different values of ωB/ω.

coupled channels, particularly in the case of strong cou-
pling. Thus, in the case of n̄ = 2 for example, the curve
of D(E) has two widely separated peaks when N = 2,
with the lower-energy peak considerably taller than the
one at higher energy. When N = 3, the second peak be-
comes taller than the first while the distance between these
peaks decreases, and a short third peak appears at much
higher energy. When N = 4, the height of the third peak
increases on the expense of the first one. In the limit of
N → ∞, eq. (16) suggests that the peak with a number
closest to n̄+1 is the tallest.

3.3 Comparison with experiment

We now compare our predictions for the barrier distribu-
tions with empirical distributions obtained for the fusion
of 16O with 92Zr [5], 144Sm [6] and 208Pb [6, 7]. These
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Fig. 2. Barrier distributions for fusion reactions induced by 16O. The excitation of two types of phonons in the target nuclei is
taken into account. The solid curves are calculated for the excitation of only single-phonon states and the dashed for unlimited
number of excited phonons. The data are taken from refs. [5–7].

are spherical nuclei according to the recent shell-corrected
droplet-model calculation [30]. We start our comparison
by testing the two-channel approximation. We take the
phonon energy to be that of the first 2+of 92Zr and 3−
states of 144Sm and 208Pb in the corresponding reactions.
We compare eq. (19) for m taking two values, − and +,
with the data to determine the best-fit values of W±and
B±, and use eq. (22) to calculate the (theoretical) ratio
of W+/W−. The results are given in table 2. We see from
the table that the theoretical value for the ratio W+/W−
agrees to within less than 10 % with the empirical value
in the case of the 16O + 144Sm reaction. This explains the
success of the two-coupled-channel calculation of fusion
barrier distribution for this reaction [29]. This is not the
case for the other two reactions, indicating the necessity
of including more channels.

We shall now consider three-channel coupling by as-
suming the excitation of two types of single-phonon states
of the target nucleus. The energies of the phonons are iden-
tified with the energies of the first two excited states. The
barrier height and width are calculated assuming an opti-
cal potential of the Woods-Saxon form and approximating
it by a parabolic potential in the form (12) by means of a
Taylor expansion. Our purpose is to obtain a qualitative
explanation for the success of the exact coupled-channel
calculation in describing discrete structure of the barrier
distribution. We therefore neglect the dependence of the
optical-model parameters on the target mass, and use for
all cases V0 = 105.1 MeV, r0 = 1.1 fm and a = 0.75 fm, as
given in [18]. The nuclear-vibration parameters are calcu-
lated adopting the values of the amplitude of zero-point
motion that have been used in the previous analyses of

Table 3. Values of the excitation energies �ωm and mean num-
bers n̄m of excited phonons of type m, and barrier height B
and curvature �ωB, used in the calculation of fusion barrier
distributions for reactions induced by 16O.

Target �ω1 �ω2 n̄1 n̄2 B �ωB

(MeV) (MeV) (MeV) (MeV)
92Zr 0.93 2.34 2.09 0.15 41.4 3.85

144Sm 1.81 1.66 1.12 0.41 61.0 4.45
208Pb 2.65 3.20 0.41 0.08 76.3 4.79

the same data [5–7]. The values of the parameters used in
the calculation are given in table 3.

We start our comparison by eq. (16) that involves the
excitation of an unlimited number of phonons. Figure 2
compares the results of the calculation by eq. (16), given
by dashed curves, with the empirical fusion-barrier distri-
butions obtained in [5–7]. We see from the figure that the
agreement between our calculations and the empirical re-
sults is quite satisfactory in the cases of the 92Zr and 208Pb
targets. This does not necessarily imply that these nuclei
behave like a classical vibrator, which has no truncation of
excited states. In fact, the level schemes for these nuclei,
as shown in the table of isotopes, do not support the exis-
tence of excited states with more than two phonons. Cal-
culations reported in the preceding subsection and in ta-
ble 1 show the rapid convergence of the restricted coupled-
channel calculation to their infinite channel-number limit
in cases of weak coupling when the mean numbers of ex-
cited phonons are small. Table 3 shows that the values of
n̄ are small for the modes of excitation of these two nu-
clei, except for the quadrupole phonons in 92Zr whose �ω
is small and cannot reproduce resolved peaks.
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Fig. 3. Effect of the finite-difference approximation to the sec-
ond derivatives in the calculation of the fusion barrier distri-
bution for the reaction 16O + 144Sm. The dashed curve is the
result of the calculation with the finite-difference approxima-
tion, while the solid curve is calculated by applying analytic
differentiation.

The situation is quite different for the 16O + 144Sm
reaction. We have already shown that the two-channel cal-
culation is expected to qualitatively reproduce the barrier
distribution for this reaction. The infinite-channel calcula-
tion, on the other hand, can result in well-separated peaks
if the eigenchannels are separated in energy by more than
the tunneling width 0.56 �ωB. In the present calculation,
two successive eigenchannels have an energy difference less
than max{�ω1, �ω2} which is 1.81 MeV, while 0.56 �ωB =
2.49 MeV for this reaction. Therefore, eq. (16) is not able,
with any reasonable choice of parameters, to yield barrier
distributions with separated peaks for this reaction. The
arguments following eqs. (22) suggest that the required
increase in peak separation can be achieved by truncat-
ing the dimension of the reaction matrix M , limiting the
number of excited phonons.

We shall now demonstrate the effect of restricting the
number of coupled channels on the barrier distributions
for the fusion of 16O with 92Zr, 144Sm and 208Pb. We again
consider only the excitation of two types of phonons in the
target nucleus with energies equal to those of the first two
excited states. When two types of phonons are excited,
the elements of the coupling matrix M can be given as

〈m1m2|M |n1n2〉 = [n1�ω1δn1,m1 + F1 (
√
n1 δn1,m1+1

+
√
n1 + 1 δn1,m1−1

)]
δn2,m2

+ [n2�ω2δn2,m2 + F2 (
√
n2 δn2,m2+1

+
√
n2 + 1 δn2,m2−1

)]
δn1,m1 . (23)

We shall limit our consideration to the coupling of the
incident channel to two inelastic channels corresponding

to the excitation of single-phonon states of the target. In
this case, we have to diagonalize a 3×3 matrix:

M =


 0 F1 F2

F1 �ω1 0
F2 0 �ω2


 , (24)

and substitute the three eigenvalues λn and the overlap
factors Un0 obtained from the corresponding eigenvectors
into (16), setting the other overlap factors to zero. The
solid lines in fig. 2 give the results of the calculation with
parameters taken from table 3. In the three cases, we ob-
tain barrier distributions with two well-separated peaks.
The figure clearly shows that the 3-coupled-channel cal-
culation is in better agreement with the empirical barrier
distribution for the 16O+ 144Sm reaction than the calcula-
tion that involves an infinite number of coupled channels.

A better agreement can be achieved by realizing that
the empirical barrier distributions are extracted from fu-
sion excitation functions measured at finite energy inter-
vals, which are equal to 1.8 MeV for the reaction under
consideration [21, 30]. To show this, we calculate the bar-
rier distribution applying the finite-difference approxima-
tion for the second derivative:

D(E) ≈ 1
πR2

B

× (E+δ)σ(E+δ) + (E−δ)σ(E−δ)− 2Eσ(E)
δ2

, (25)

with δ = 1.8 MeV , and using Wong’s expression for the
cross-section of fusion across a parabolic barrier [25]:

σ(E) =
�ωBR

2
B

2

N∑
m=0

|Um0|2 ln
[
1+e2π(E−B−λm)/�ωB

]
. (26)

Figure 3 shows the comparison of the barrier distri-
bution calculated by the finite-difference method for the
16O + 144Sm reaction (the dashed curve) with that cal-
culated by (16) in which the second derivatives are calcu-
lated analytically (solid curve), together with the empir-
ical distribution. As expected, the positions of the peaks
and valleys are the same in the two calculated distribu-
tions. The heights of the two peaks are reduced by 10%
when the finite-difference approximation is introduced,
while the valley is raised by 16% . These changes con-
siderably improve the agreement with the empirical dis-
tribution. In the meanwhile, there are experimental [32] as
well as theoretical [33] support for the existence of double
octupole phonon states in 144Sm. Hagino et al. [34] have
shown that the inclusion of double-phonon excitations of
144Sm in couple-channel calculations in the harmonic limit
destroys the agreement with the empirical barrier distri-
bution achieved when only single-phonon excitations are
considered. This contradiction has been reconciled by tak-
ing into account anharmonicity effects.

Figure 2 also shows that the barrier distributions for
the fusion of 16O with 92Zr and 208Pb obtained in the
three-channel calculations also have two peaks. The empir-
ical distributions for these nuclei have one peak each and
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Fig. 4. Effect of the constant coupling approximation on the
fusion barrier distribution for the reaction 16O + 144Sm. The
dashed curve is the result of a two-channel calculation by Mor-
ton et al. [29] assuming linear coupling without making the
constant coupling approximation, while the solid curve is cal-
culated using eqs. (21). The data are shown to compare the dif-
ferences between the curves with the experimental error bars.

seem to agree better with the results of the infinite-channel
calculation as mentioned above. We thus conclude that
it is necessary to increase the dimension of the coupled-
channel calculation in order to reproduce the empirical
distribution for 92Zr and, probably, 208Pb. This conclu-
sion is not inconsistent with the outcome of previous in-
vestigations. For example, Rowley [21] shows that the in-
troduction of the double-phonon states in the calculation
of the barrier distribution for 92Zr considerably increases
the overlap between the two peaks of the single-phonon
calculation, making the second peak look as a shoulder of
the first. Concerning the reaction 16O + 208Pb, Dasgupta
et al. [23] have shown that a realistic coupled-channel cal-
culation that includes the coupling to the 2+, 3− and 5−
vibrational states in 208Pb also produces a double-peaked
barrier distribution. The agreement of their calculation
with the empirical barrier distribution has been dramati-
cally improved by increasing the number of coupled chan-
nels to include double octupole-phonon states, which have
already been observed experimentally [35]. We note, how-
ever, that the empirical barrier distribution for 208Pb has
large error bars at the high-energy side. We cannot def-
initely exclude the possibility of existence of additional
peaks in this region.

3.4 Validity of the model

Our purpose now is to test the linear- and constant-
coupling approximations of Dasso, Landowne and

Fig. 5. Effect of the linear coupling approximation of the fu-
sion barrier distribution for the reaction 16O + 144Sm. The
dashed curve is the result of a three-channel calculation by
Hagino et al. [34] which considers the coupling to all orders
without making the constant coupling approximation, while
the solid curve is calculated by diagonalizing the matrix (24).
The data are shown to compare the differences between the
curves with the experimental error bars.

Winther’s model, which is used throughout the present
paper. For this purpose, we compare the predictions of
the model for the barrier distribution of the reaction 16O
+ 144Sm with the results of the corresponding coupled-
channel calculations in which these assumptions are not
made. These calculations are performed numerically, and
the barrier distributions obtained there are evaluated with
a finite-difference method. Therefore we apply eqs. (25)
and (26), again with energy difference δ = 1.8 MeV. We
first test the constant coupling approximation by com-
paring our predictions for the two-channel approximation
with the calculations by Morton et al. [29]. These authors
use the code CCMOD that adopts the linear coupling ap-
proximation but diagonalizes the matrix M separately at
each value of the intranuclear distance r. The barrier dis-
tribution that they obtain is in a good agreement with the
experimental data, as shown in fig. 4 (the dashed line). It
has two peaks, whose positions and weights are (60.42
MeV, 0.73) and (64.62 MeV, 0.27), respectively. If we
use their optical-model and deformation parameters, we
obtain n̄ = 1.24 which, when substituted into eqs. (21),
yields for the positions and weights of the two peaks the
values (59.80 MeV, 0.71) and (64.23 MeV, 0.29), respec-
tively. The solid curve in fig. 4 is obtained by substituting
these values into eq. (26). Comparison between the two
curves, and between the sets of values obtained for the po-
sitions and weights of the peaks from our calculation and
from that of Morton et al., shows that the constant cou-
pling approximation has a small influence on the overall
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shape of the barrier distribution. The only effect of con-
stant coupling on the barrier distribution is a small shift
(≈ 0.5 MeV) of the peak positions towards lower values
and a slight increase of the height of the high-energy peak.
Reducing the height of the barriers leads to the overesti-
mation of the tunneling flux and the enhancement of the
low energy fusion rates. This effect of the linear-coupling
approximation has been already observed by Tanimura et
al. [36].

An analogous conclusion holds for the linear-coupling
approximation. The dashed curve in fig. 5 is the outcome
of a more elaborate analysis of the same data by Hagino
et al. [34]. These authors consider both the quadrupole
and octupole surface vibrational states of 144Sm. They
use neither the constant nor the linear coupling approx-
imations. The solid curve in this figure is the prediction
of eqs. (25) and (26) when the eigenvalues and overlap
factors of the eigenchannels are obtained from a diagonal-
ization of the 3×3 matrix (24) using the same parameters
as Hagino et al.. The figure shows that the peak widths
in our curve are slightly wider than those in the barrier
distribution obtained by Hagino et al.. Strangely enough,
our peak positions match almost exactly, the calculation
with non-constant non-linear coupling.

We finally note from figs. 4 and 5 that the differences
between the curves calculated by the present model and
those calculated by more elaborate theories are generally
less than the experimental error bars. This is a point in
favor of the simple eigenchannel model that applies the
linear- and constant-coupling approximation.

3.5 Effect of absorption

The present formalism assumes that the two colliding nu-
clei fuse to form a compound nucleus once they penetrate
the “real” potential barrier. The strong-interaction effects
are partially taken into account by coupling to few in-
elastic channels. This picture is valid for fusion of rela-
tively light nuclei, with ZPZT < 1000 [1,2]. As systems get
more massive, fusion starts to compete with other reac-
tion channels representing a significant exchange of mass,
energy and angular momentum. Some of these effects have
been considered in a previous paper [37]. For heavy sys-
tems having ZPZT greater than about 1600, dissipative
effects are so important that the entire coupled-channel
formalism becomes no more valid to describe fusion [2].

We shall now consider absorption effects on fusion-
barrier distributions within the framework of the extended
optical model [38] which is suggested to fit simultaneously
data on the fusion cross-section and on the elastic scatter-
ing differential cross-section. This model splits the imagi-
nary part of the optical potential into two terms,

W (r) =WF(r) +WD(r) . (27)

The first term accounts for fusion while the second
characterizes the remaining absorption due to the more
peripheral, or “direct”, reactions. According to Satchler et
al. [39], the imaginary fusion potentialWF is itself decom-
posed into a “bare” component WoF with a small radius

that confines it inside the Coulomb barrier and a more ex-
tended “polarization” component, WpF, which represents
multistep fusion via direct channels. The relation between
the generalized optical potential and the model described
above can be established by assuming that imaginary bare
potential is responsible for fusion following the penetra-
tion of the Coulomb barrier, while the imaginary polariza-
tion potential is accounted for by channel coupling before
tunneling. One may then expect that the fusion potential
WF is accommodated in simplified coupled-channel calcu-
lations. The effect of the imaginary direct potential WD

can be represented by multiplying the transmission coeffi-
cient for each partial wave by a factor S(E, l) representing
the probability of survival against absorption into direct
reactions [40–42].

We shall incorporate the effect of absorption in our
calculation of the barrier distribution by inserting the sur-
vival probability factor into expression (15):

Eσfus = πR2
B

N∑
m=1

Wm

×
∫ E

−∞
T0(E′−λm)S

(
E,

√
2µ(E−E′)

�
RB

)
dE′ . (28)

In the semi-classical approximation, the survival prob-
ability is expressed in terms of an integral along the clas-
sical Coulomb trajectory [41,43]

S(E, l) = exp
{
−1

�

∫ ∞

−∞
WD[r (t)]dt

}
. (29)

Following Canto et al. [43], we expand the internuclear
distance r(t) around the point of closest approach d ≡
r(t0) up to second order of t. After integration, eq. (28)
becomes

S(E, l) = exp

[
−W (d)

�

√
2πaD

r̈(t0)

]
, (30)

where aD = 1/|W ′
D(d)/WD(d)| which will subsequently

be identified with the diffuseness of WD(r), kd = η +√
η2 + l(l + 1) with k denoting the incident wave num-

ber and η the Sommerfeld Coulomb parameter which can
be expressed in terms of the barrier height by η/k =
BRB/2E, and r̈(t0) =

(
2E/µkd2

)√
η2 + l(l + 1). For suf-

ficiently large η, the survival probability will nearly equal
unity for moderately large values of l. Thus, neglecting
terms of order [l(l+1)/η2]2, and approximating the de-
pendence of WD(d) on l(l+1) by an exponential function,
we obtain

Eσfus = πR2
B

N∑
m=1

Wm

∫ E

−∞
T0(E′ − λm)

× exp
[
−γ(E)e−α(E−E′)

]
dE′ , (31)

where γ(E) = 1
�EWD

(
BRB

E

)√
2πµaDBRB and α =

RB/BaD. Noting that the imaginary part of the optical
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potential in general increases almost linearly with energy,
we approximate γ by its (constant) value at E = B. Then,
differentiating (31) twice with respect to E, we obtain

D(E) =
∫ E

−∞

dD0 (E′)
dE′ exp

[
−γe−α(E−E′)

]
dE′. (32)

Thus the effect of the absorption into direct channels
is to introduce an exponential function in the integrand,
which varies between e−γ and 1. With the above choice
of parameters and taking WD(RB) = 0.46 MeV and aD

= 0.28 fm [38], we find that γ = 0.17, 0.15, and 0.14 for
the interaction of 16O with 92Zr, 144Sm and 208Pb, re-
spectively, indicating that the investigated effect is small.
We note that the function dD0/dE′ vanishes except in
a small vicinity of E′ = B. For energies E > B, the
main contribution to the integral will come from values
of E′ ≈ B, otherwise the integral will be dominated by
values of E′ ≈ 0, so that the slowly varying exponential
function in (32) can be evaluated at these values of E′.
We then obtain

D(E) = D0(E) exp (−γ) , if E < B ,
= D0(E) exp

[−γe−α(E−B)
]
, if E > B .

(33)

We thus conclude that that the effect of introducing
the imaginary potentialWD(r) on the barrier distributions
under consideration is to increase the heights of the high-
energy peaks slightly and shift their positions in the high-
energy direction.

4 Summary and conclusions

We include the excitation of different types of phonons in
the target and projectile into the constant coupling model
by Dasso, Landowne and Winther for fusion of vibrational
nuclei and apply it to calculate the fusion barrier dis-
tribution when the Hill-Wheeler formula is used for the
transmission coefficients. Without limitation on the num-
ber of excited phonons, the model leads to a reasonable
description for the empirical fusion-barrier distributions
when the coupling to inelastic channels is weak. In the
case of strong coupling the barrier distribution has a com-
plex structure, which can be reproduced only when the
number of excited phonons is restricted. We have shown,
by diagonalizing coupling matrices with dimensions vary-
ing from 2 to 4, that separation between a given pair of
eigenchannels increases with decreasing the dimension of
the matrix particularly for stronger coupling, and that
the overlap factors of the eigenchannels with the incident
channel are modified. Thus the shape of the barrier dis-
tribution can determine the number of channels that has
to be considered in fusion calculation if these channels are
strongly coupled. Coupled-channel calculations succeed in
producing the discrete structure of the barrier distribution
whenever they exist because the calculation involves few
excited states. Increasing the number of involved channels
will not necessarily improve the comparison with experi-
ment.

We have tested our conclusions by calculating the fu-
sion barrier distribution for the fusion of 16O with the
presumably vibrational nuclei 92Zr, 144Sm and 208Pb. The
calculation is done once without restricting the number of
excited phonons and once by restricting the excitation of
each target to a pair of single-phonon states. The results of
the infinite-channel coupling calculation reasonably agree
with the empirical barrier distributions for the 92Zr and
208Pb targets, while the double-peaked barrier distribu-
tion of 144Sm is only reproduced by the three-channel cal-
culation. The validity of the linear and constant-coupling
approximations for the qualitative, if not quantitative de-
scription of the empirical distributions is demonstrated
by the comparison between the predictions of the present
calculation and other calculations free from these approx-
imations. The effect of absorption into direct channels on
the fusion-barrier distribution for the reactions considered
amounts to a small shift of the positions of the peaks to-
wards higher energies.

We finally note that, in real nuclei, the limiting of
the number of excited phonons is not unphysical. Only
single-phonon states in several nuclei are known for sure.
Each two-phonon state is split into three or more lev-
els depending on the multipolarity of the phonons. Only
in very few nuclei are we able to identify a 3-phonon
state [44]. If multi-phonon vibration modes are realized
in a nucleus, the corresponding excited state will belong
to a high-energy domain where the nonlinear interaction
among the phonons, and between them and the single-
particle degrees of freedom will put the nuclear motion
into the chaotic regime. These states weakly overlap with
the wave function in the ground state region, where the
collective motion is almost regular [45].
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